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THERMAL CONDUCTANCE OF TWO-DIMENSIONAL
ECCENTRIC CONSTRICTIONS

by

T. Nejat Veziroglu
Professor Mechanical Engineering

~and
Manuel A. Huerta -

Instructor of Physics

University of Miami
Coral Gables, Florida

Abstract

A theoretical investigation of thermal conductance of
two-dimensional eccentric constrictions has been carried out.
By the use of conformal transformations, a closed form exact
analytical solution has been obtained. The solution has been
presented in terms of three dimensionless numbers - a con-
ductance number, a constriction number and an eccentricity
number. The theory has been checked with previously reported
experimental results. The agreement is excellent. It has
also been compared with two analytical expressions reported

earlier.

Introduction

When heat flows by conduction through parts of equip-
ment, in many instances, it is abruptly constricted to

small cross-sectional areas, or when it flows through surfaces
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in contact it is always forced to pass through smaller cross-
sectional areas, as compared to flow areas away from such
abrupt constrictions. As a result of the convergence and
divergence of heat flow lines at and near such a constriction,
a thermal resistance (or conductance) develops. This re-
sistance is usually quite high compared to the resistance
offered to heat flow away from the constriction. For a

. reliable heat transfer analysis of a given system, such
constriction resistances must be accurately predicted in
addition to other parameters.

The simplest constrictions are two-dimensional con-

v strictions where the constriction geometry is a function of
two rectangular co-ordinates only. The conductances of two-
dimensional symmetrical constrictions haVe been investigated

by Kouwenhoven and Sackett(l)
(4)

, Sackett(z), Mikic and Rohsenow(3)

b

and Veziroglu and Chandra both theoretically and experi-
mentally. Veziroglu and Chandra obtained the exact solution
of the problem which agreed very well with the experimental
resulté. The above mentioned researchers, with the exception
of Mikic and Rohsenow, also investigated the conductances of
two-dimensional eccentric constrictions. They all reported
some experimental studies, and additionally Sackett, and
Veziroglu and Chandra derived analytical expressions for
calculating the conductances of two-dimensional eccentric
constrictions by making some simplifying assumptions.
Sackett assumed that only a wedge-like part (made up of

sides starting at constriction edges and extending to flow

channel boundaries by making a certain angle with the con-
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striction plane) of the flow channel near the constriction
was effective in conducting electricity (or heat), calculated
its resistance, and presented the result as the percentage
increase in resistance of an eccentric constriction with
respect to that of a symmetrical constriction of the same
siée. This expression would predict lower resistances (or
higher conductances) than those obtained experimentally by

up to 5 per cent. Veziroglu and Chandra replaced the constant
temperature condition at the constriction by a uniform flux
distribution and obtained a series expression for the con-
ductance of the eccentric constrictions which gave quite a
good agreement with the experimental results. However, it

had the disadvantage of being in the form of inifinite series.

Theory
Fig. 1 shows the steady state isotherms and heat flow

lines for a two-dimensional eccentric constriction. The
heat flow channel width is 2a, the constriction width 2b,
the eccentricity (the distance between the centerline of
the heat flow channel and the centerline of constriction) e,
and the channel thickness t. Because of the symmetry, it
will suffice to consider only one of the half planes, e.g.,
the one defined by y = o. The steady state temperature

distribution must satisfy the Laplace's equation,

'—'—a g + —a 'g = o . [ . . 3 L4 (l)

and the following boundary conditions,



oT, _ ®
(ax) =0 0 <y < . . (2)
X=a
aT, _
(BX) =0 0O <y < @ . . (3)
X=-a
(%l) =0 -a < X < e~b ., e (4)
Yy=0
(%Z) =0 e+th < x < a . (5)
Yy=0
(T)y=o= Constant e-b < x < e+b . (6)

The temperature distribution satisfying equation(l)
and conditions (2) through (6) can be reduced to a very
simple, linear, temperature distribtution by means of three
conformal transformations. Fig. 2 illustrates these trans-
formations. Fig. 2A shows the boundaries of the problem
posed in the complex z plane. The temperature slope is zero
along the boundaries ABC and DEF, and the temperature is
constant along the boundary CD. These boundaries can be
transformed to the boundaries shown in Fig. 2B by means of
the conformal transformation of

=sin(“?:— ) ] . . } .. D

%1
which preserves the Laplace's relationship and the boundary
conditions along the transformed boundaries. The distances

OlCl and 0,Dy in the complex zy plane are, with the help of

the transformation relationship (7), given by

- OC

Olcl = sih 53
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or OlCl=sin {%—2——1})} . . . . . (8)
e i T +OD

and °1D1 = sin 5=

or 0,0, = sin (KLY (g

Now a second transformation will be carried out in order
to bring the ordinate to the middle of the transformed con-
striction C2D2 (See Fig. 2C). This can be achieved by means

of the conformal transformation of

1
z, = z;- 3{0;c; + OlDl} . . . . (10)
Substituting equations (8) and (9) in (10), z, becomes
_ _ 1. . zn(e-b) . g (e+b)
z, = 2 2{51n 3a * sin /52 } . . . (11)

Because of the transformation relationship (11), the distances

0,C, and 0,D, in the complex z., plane are given by

272 272 2
__ 1, . n(e+b) _. n(e-b)
0,C, = - 2{51n % sin “o= } . . . . (12)
_Lle i nf(etb)  _. g(e-b)
and 0,D, = 2{51n >a sin > } . . . . (13)

which shows that the new ordinate is located in the middle
of the transformed constriction.

The boundaries shown in Fig. 2C can be transformed into
the boundaries shown in Fig. 2D by means of the conformal

transformation of



2a . -1, %3
— 8s1n { } . . . . . . .
T 02D2

N
il

3 . (14)

Substituting equation (13) in (14), and inverting, one

obtains

1, . +b . ~b),_. %
z, =‘5{51n-£i§;—)— sin £-‘-3-5—)}51n 3 . (15)

2a

Substituting equation (7) in (11), and the resulting ex-
pression in equation (l15), the transformation relationship

between the complex z and z4 planes becomes

19 A

sin(%%):sin(%%) cos( )+ s:.n(“b)cos(“e)51n(2 3

=) (16)
which again preserves the Laplace's relationship and the
boundary conditions along the transformed boundaries.
Writing z=x + iy and z3= X3+ iy3 in the transformation
relationship (16) and considering the real and imaginary
terms, one obtains the following relationships between the

coordinates in z and z, planes:

3

J‘(X

ny
51n(——0cosh(—x) s1n( )cos( )+51n( )cos(——)51n( )cosh(—ig)

(17)

nX
and cos (-’%’) sinh (12'%) =sin (;—g-) cos (—’2%) cos (2a3

(18)

For heat flow along the constant width (2a) and no

constriction channel shown in Fig. 2D, the steady temperature
distribution is given by
T = my, . . . . . . . (19)

where m is a constant. Equation (19) satisfies the Laplace's



equation and the transformed boundary conditions of (2)
through (6) . The constant temperature at the constriction
has been taken as zero for convenience.

Eliminating X4 between equations (17) and (18), solving
for Y3 substituting for Y3 in equation (19), the temperature
distribution T in terms of the original coordinates and geo-

metry becomes

-1 [s1n(——0cosh(—1) s1n( )cos( )] +cos ( )51nh (—X)

T = m-gcosh
n sin (—) cos (—2——)

. {[sin (EE)cosh (5Y)-sin (§2) cos (X2 )] +cos” (5%) sinh? (§¥)-sin? &2 2) cos? (£2) 32
“© T sin® (32) cos® &)
1/2

4 cos? (&%) sinh? (&)
+ - a C e e e e e (20)
51n( )co (g—a)

The thermal resistance introduced as a result of the

constriction in the heat flow channel can be defined as
R = e L ] . L] L] L ] L] . [ ] (2]—)

where AT is the additional temperature drop produced by
the constriction and H the heat flow rate in the channel.
The temperature drop ATc can be calculated from

= i i t - 'az - . . . .
ATC Limit {T-y ay} (22)

y—o&

In this equation the first term within the brackets rep-

resents the actual temperature drop between y=e« and y=o



(constriction) and the second term the temperature drop
between the same two points if there were no constriction.
Substituting equation (20) in (22) and taking the limit,

the constriction temperature drop becomes

aT | = 280 g 1 =1 . . . (23)

¢ X cosc——)SLn( )

The heat flow rate H can be calculated from

= (Channel C.S.A.) (Thermal Conduct1v1ty)(

ayy_m

or H = 2 at kci—) ... (24)
y-—oo

From equation (20), the temperature slope at y=« 1is,

( =m . . . . . . . (25)

Substituting equation (25) in (24), the heat flow rate
becomes

H = 2amtk . . . . . . . (26)

Substituting equations (23) and (26) in (21), the thermal
constriction resistance (for one side of the constriction)
is found to be

1 1
In{
c gntk o

1 { ... (27)
cos( )31n( )

The constriction conductance per unit area of the flow

channel, by definition, is,



1
(Channel C.S.A.)RC

or u= 1K T . . . . (28)
2a 1nf{

1€y oin (ER
cos(za)51n(2a)

The number of variables in the above equation can be reduced
by introducing three dimensionless numbers, a constriction
conductance number U, a constriction number C, and an

eccentricity number E, defined as follows:

u (Channel width) 2au

U= n =% . . . (29)
o = (Constriction width)_ 2b _ b (30)
- (Channel width) =~ 2a  a :
_ 2 (Eccentricity width) _ _e
and E = (Channel Width)- (Constriction width) ~ a-b (31)

The eccentricity number E, defined by equation (31) varies
between 0 and 1 for a given constriction number C. Equation
(28) can now be written in dimensionless form by using
equations (29), (30) and (31), resulting in the following
expression

U = “l : . . . . (32)

In{

sin "Z—C)cos["z—E(l-c)]

A study of the above expression shows that the constriction
conductance number U increases with increase in the constriction
number C, decreases with increase in the eccentricity number

E, and reaches one-half of the value for the symmetrical case
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when E has its maximum value of unity.

For no eccentricity, in other-words for E=0, equation

(32) reduces to

U = X . . . . . . (33)
L

sin (&F

which is same as the expression obtained for the thermal
conductance of two-dimensional symmetrical constrictions
in reference (4). Dividing equation (32) by (33), the
ratio of the constriction conductance number for a given
eccentricity to that for zero eccentricity becomes

1n{512£§9)}

U - .
o ln{sin(%g)cos[%g(l—c)]}

. (34)

G

This ratio varies between 0.5 and 1 depending on the values
of the dimensionless numbers C and E which can vary between

0 and 1.

Discussion

The results of the present investigation and references
(2) and (4) are plotted in Figs. 3, 4 and 5 as the ratio of
the constriction conductance number to that of zero eccen-
tricity U/Uo versus the eccentricity number E for the con-
striction numbers of 0.04, 0.08 and 0.125 respectively,
since experimental data were available for these values of

E. The experimental points are those of Sackett(z) for
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Cc 0.04 and C = 0.08, and of Veziroglu and Chandra(4) for

Cc

0.125., 1In the two experimental investigations electrical
analogy was used. The theoretical curves were obtained

from the present theory using the appropriate values of the
constriction number C and also from the relationships

derived by Sackett, and Veziroglu and Chandra. In his

theory, Sackett employing the wedge model described earlier
obtained a relationship for the ratio of the resistance
increase due to eccentricity to the constriction resistance
for zero eccentricity. 1In terms of the present dimensionless
numbers, it can be written as

in () + c-1

= T - . . (35)
ln{m} - (1+E) (1-C)

cla

(o}

For the same ratio, Veziroglu and Chandra - assuming a
uniform flux distribution at the constriction - obtained

the following relationship

sinz(nnc)
U
o = . . (36)

°© 8% Lisin?@%c)cos?[AL (148-EC) ]
n

M
:‘J‘J -

The constriction f£lux distribution ¢' employed in

the derivation of the above equation can be expressed by

. -
q - th . . . . . . . (37)

where H is the total heat flow rate in the channel containing

the constriction. Using equation (20), it can be shown that
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the correct flux distribution g at the constriction would

be
a = k&)
y=o
nX
_ H cos(2a
or g = — Y
2 e, 2ab . . rxX . xe  xb
2at VLos (2a)s1n (Za) [51n(2a) 51n(2a)cos(2a)]
. - 3 0(38)

This relationship shows that the constriction flux

distribution is not uniform but somewhat parabolic in form

such that it is infinite at the constriction edges (i.e.,
o for x=e-b and x=e+b) and reaches a minimum in between.

From Figs. 3, 4 and 5, it can be seen that the agreement
between the experimental data and two of the theories, the
present theory and the theory of reference (4), is quite
good. It is interesting to note that although the constriction
flux distribution assumed in reference (4) was an over-
simplification of the actual distribution the conductance
ratio is in good agreement with the experiments and the
present theory. However, the present theory, in addition
to being the exact solution, has the advantage of being in
a very compact form as compared to the infinite series
form of the theory of reference (4). The agreement between
the experimental data and the theory of reference (2) is
not so good, except for the extreme values of the eccentricity
number E (i.e., for E=o and E=l).

In order to compare the present theory with two previous
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theories for a wider range of the constriction number than
that covered in Figs. 3 through 5, Table I has been prepared.
It lists the values of the conductance ratios for the three
theories and also the percentage divergences of the theories
of references (2) and (4) from the exact solution, the pre-
sent theory, for various combinations of the constriction
number and the eccentricity number. It can be seen from

the table that at the two extreme values of the eccentricity
number all the theories give the same result for the con-
ductance ratio. However, in between the extreme values of

the eccentricity number, the conductance ratio values of

the theory of reference (2) is greater by as much as 4.8%
than those obtained from the exact theory, and the conductance
ratio values of the theory of reference (4) is also greater
but to a smaller extent with a maximum divergence of 1.9%.

It must be noted here that in the evaluation of equation (36)
for Table I, the first forty terms of the infinite series were
used. If more terms were used, the maximum divergence would

have been less than 1. 9%.

Conclusion

One closed form equation is derived for calculating the
exact thermal conductance of two-dimensional eccentric
constrictions. The agreement between the theory and experi-
mental data is good. Thermal conductance of two-dimensional
constrictions increase with (a) increase in thermal conduc-

tivity, (b) increase in constriction width, (c) decrease in
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channel width, and (d) decrease in eccentricity.
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Nomenclature

Point in flow channel boundary

Half width of Heat Flow Channel

Point in flow channel boundary

Half width of Constriction

Constriction Number (=b/a); Point in flow
channel boundary

Point in flow channel boundary
Eccentricity Number (=e/(a-b)); Point in
flow channel boundary

Eccentricity

Point in flow channel boundary

Heat flow rate

J-1

Thermal conductivity

Natural logarithm

Proportionality factor; Temperature slope
away from constriction

Number

Origin; Point in flow channel boundary
Thermal flux

Resistance

Temperature

Flow channel thickness

Conductance Number (=2au/k)

Constriction conductance per unit area
Abscissa in two-dimensional plane; Abscissa
in complex z plane

Crdinate in two-dimensional plane; Ordinate
in complex z plane

Complex plane

Difference
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Constriction
No-constriction
First transformation
Second transformation

Third transformation
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